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ABSTRACT: Significant progress has been made in pro-
spectively designing molecules using the central nervous
system multiparameter optimization (CNS MPO) desirability
tool, as evidenced by the analysis reported herein of a second
wave of drug candidates that originated after the development
and implementation of this tool. This simple-to-use design
algorithm has expanded design space for CNS candidates and
has further demonstrated the advantages of utilizing a flexible,
multiparameter approach in drug discovery rather than
individual parameters and hard cutoffs of physicochemical
properties. The CNS MPO tool has helped to increase the
percentage of compounds nominated for clinical development that exhibit alignment of ADME attributes, cross the blood−brain
barrier, and reside in lower-risk safety space (low ClogP and high TPSA). The use of this tool has played a role in reducing the
number of compounds submitted to exploratory toxicity studies and increasing the survival of our drug candidates through
regulatory toxicology into First in Human studies. Overall, the CNS MPO algorithm has helped to improve the prioritization of
design ideas and the quality of the compounds nominated for clinical development.
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efficacious drug concentration (Ceff), Harrington optimization, human liver microsome stability, hydrogen-bond donor, lipophilicity,
Madin−Darby canine kidney, molecular weight, most basic pKa, multiparameter optimization (MPO), multivariant optimization,
passive permeability, P-glycoprotein (P-gp), polarity, topological polar surface area, unbound intrinsic clearance

In an effort to reduce attrition of our clinical candidates and
prospectively increase our odds of success, we began to

consider alternative ways to assess the quality of our design
ideas. In 2010, we reported our initial analysis of central
nervous system (CNS) drug property space, which included
examination of physicochemical, in vitro absorption, distribu-
tion, metabolism, and elimination (ADME) attributes, and in
vitro potency property space for a set of CNS drugs and
candidates.1 In that work, the two compound sets could be
differentiated by their physicochemical properties and their
ADME and safety attributes; we utilized the drug set to define a
historical optimal chemical space possessing alignment of key
drug properties for CNS therapeutic agents. In an effort to use
this knowledge prospectively in design, before compounds are
synthesized, we searched for a way to incorporate this
information into an easy-to-use design tool. We began
experimenting with the concept of multiparameter optimization
(MPO). Multiparameter optimization methods provide a
means to assess and balance several variables based on their
importance to the overall objective.2 Using this approach, we
developed the CNS MPO desirability tool, which consisted of
six fundamental physicochemical properties [(a) lipophilicity,
calculated partition coefficient (ClogP); (b) calculated
distribution coefficient at pH 7.4 (ClogD); (c) molecular

weight (MW); (d) topological polar surface area (TPSA); (e)
number of hydrogen-bond donors (HBDs); and (f) most basic
center (pKa)] that we determined were important factors in the
alignment of ADME and safety drug attributes.1,3 In contrast to
a quantitative structure−activity relationship or machine
learning model,4,5 the CNS MPO desirability tool is built
upon medicinal chemistry experience on ranges of desirable
property space and simple piecewise linear transformational
functions with values between 0 and 1 (defined as T0 for each
property).3 A monotonic decreasing function was used for
ClogP, ClogD, MW, pKa, and HBD, whereas a hump function
was used to define TPSA (Figure 1).3 Each parameter was
weighted equally, and the collective score ranged from 0 to 6,
with higher CNS MPO scores being more desirable. Most of
the compounds in the drug set had CNS MPO desirability
scores greater than 4, which differentiated them from the
historical candidate set. The advantages of the CNS MPO
desirability method lie in (a) its simplicity, with parameters
derived from best medicinal chemistry practices, (b) its ability
to balance multiple variables while avoiding hard cutoffs, and
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(c) its demonstrated alignment with desirable in vitro ADME
attributes. Importantly, CNS MPO can be used prospectively in
molecular design.
Prior to the publication of our work in 2010, we began to

routinely use the CNS MPO desirability method to help
prioritize design ideas for advancement to synthesis. After
nearly 8 years of use, we have reassessed the robustness of this
tool and report herein the analysis and comparison of our
second wave of candidates, post-CNS MPO implementation,
with the original candidate set.

■ RESULTS AND DISCUSSION
Twenty-one clinical candidates identified post-CNS MPO
implementation (“CNS MPO candidate set” henceforth) and
the original candidate (108) and drug (119) sets from our 2010
publication1 were evaluated using the original set of six
physicochemical properties used to define the CNS MPO
algorithm: ClogP, ClogD, MW, TPSA, HBD, and pKa (Figure
2). The ClogP median value (2.2) for the CNS MPO candidate
set is a log unit lower than that of the previous candidates (3.3)
and one-half log unit lower than that of the drug set (2.8). The
ClogP values for the majority of the CNS MPO candidates
varied from 1.7 (25th percentile) to 3.0 (75th percentile). The
median value for ClogD (3.0) of the CNS MPO candidate set
was higher than the corresponding ClogD median values for
the drug and candidate sets (1.6 and 2.3, respectively).
Comparison of the most basic pKa median value for the three
sets of compounds showed that the CNS MPO candidate set
had a lower median basic pKa (4.1) than the drug (8.0) and
candidate (8.3) sets; this difference of 4 log units was
statistically significant. Given that the CNS MPO candidate
set is more neutral in nature, the higher median value for

ClogD (3.0) vs ClogP (2.2) for this compound set suggests that
the ClogD calculator may be overestimating ClogD values (vide
inf ra). The CNS MPO candidate set MW (397.9) median value
was higher than the drug set MW (305.3) and the candidate set
MW (360.4) by 94.6 and 37.5 Da, respectively. Polarity, as
described by TPSA, ranged from 73.4 Å2 (25th percentile) to
88.4 Å2 (75th percentile), with a median value of 80.8 Å2 for
the CNS MPO candidate set, nearly double that of the drug set
(44.8 Å2). The shift to more polar property space was
intentional and designed to improve safety outcomes; this is
discussed later in the article. All three sets of compounds had a
minimal number of HBDs, with the median value being one
HBD, suggesting that optimization of HBD to ≤1 may increase
the odds of identifying CNS-penetrant compounds. From this
analysis, it is clear that the CNS MPO candidate set occupies a
different property space from that of either the original
candidate or drug set. By focusing on the multiparameter
approach, rather than being limited by single parameters and
hard cutoffs in design, we have expanded “traditional CNS
space” to include molecules that are less lipophilic, less basic,
more polar, and larger while retaining good CNS exposure.
This approach has enabled access to new CNS target classes
such as kinases and proteases, which may require different
physical chemical property ranges in order to achieve higher
potency.
We calculated the CNS MPO desirability scores for the three

compound sets and compared the compound distribution
across the desirability continuum (0−6) (Figure 3).3 The CNS
MPO candidate set had a higher overall desirability score than
the candidate and drug sets despite the fact that median ClogD
and MW values were in the less desirable range. The
improvement in CNS MPO desirability is achieved because
the median ClogP and TPSA values were in a more desirable
range, reinforcing the value of a flexible multiparameter
approach. The CNS MPO candidate set had the highest
numerical percentage of compounds with CNS MPO
desirability score >5 (48%) compared to that of both the
drug (40%) and candidate (30%) sets. The original candidate
set had a large percentage (31%) of compounds in the 3−4
range, whereas the CNS MPO candidate set had only 19% in
this range, which is comparable to that of the drug set (16%).
The overall distribution of the CNS MPO candidate set
resembles that of the drug set, with the number of compounds
in each bin increasing with the desirability score. Furthermore,
no compound in the CNS MPO candidate set exhibited a
desirability score less than 2. Collectively, this suggests that our
compound designs are effectively using CNS MPO to explore
and balance compound properties.
In our original analysis of drugs and candidates, the

probability of a compound possessing desirable in vitro
ADME attributes (high Papp, low P-gp efflux liability, low
unbound human liver microsome clearance) increased as its
CNS MPO desirability score increased. In the current analysis,
the CNS MPO candidate set had a higher CNS MPO median
value (5.0) than the original candidate set, and indeed, across
all three ADME assessments, the CNS MPO candidate set
provided a higher percentage of optimal values (Figure 4). All
21 compounds in the CNS MPO set were tested in each of the
in vitro assays: 86% of the compounds had high passive
permeability, 90% exhibited low P-pg efflux liability, and 90%
displayed low metabolic clearance. It is interesting to note that
the CNS MPO candidate set also outperformed the drug set in

Figure 1. Each plot represents one of the six physicochemical property
desirability functions used to generate the CNS MPO. Each point on a
plot represents a drug or candidate. (A) ClogP, (B) ClogD, (C) MW,
(D) TPSA, (E) HBD, and (F) pKa. The most desirable (T0 = 1.0) and
least desirable (T0 = 0.0) inflection points are marked with green and
red arrows, respectively. A linear function was used to determine the
desirability scores between the inflection points. Reprinted from ref 3.
Copyright 2010 American Chemical Society.
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having a higher percentage of compounds with optimal ADME
values.
Previously, we reported that an increase in the CNS MPO

desirability score led to an increase in the number of individual
compounds with alignment of in vitro ADME attributes defined
as a compound satisfying one or more criteria of high Papp, low
P-gp ER, and low CLint,u. We compared the three sets to

determine if the ADME alignment trend would hold true for
the new compound set (Figure 5). A clear distribution of
compounds exhibiting varying degrees of alignment was
observed across the CNS MPO desirability continuum.
Compounds having full alignment of ADME attributes heavily
populated the higher end of the CNS MPO score spectrum; for
the CNS MPO candidate set, the preponderance (94%) of

Figure 2. Physicochemical property distribution of drugs, candidates, and candidates post-CNS MPO implementation (CNS MPO candidates) for
ClogP, ClogD, MW, TPSA, HBD, and most basic pKa. BioByte (version 4.3) was used to calculate ClogP, and ACD software (version 12.1) was used
to calculate ClogD and pKa. Count represents the number of compounds included in each analysis. Red dotted line represents the median value.

Figure 3. CNS MPO desirability scores for candidates, CNS MPO candidates, and drugs were plotted from low to high CNS MPO desirability score
along the x axis. The compound count and percentage for each bin appear above the corresponding bar.
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Figure 4. Distribution of in vitro permeability Papp, P-gp efflux ratio, and unbound human liver microsome (HLM) intrinsic clearance (CLint,u) for
candidates, CNS MPO candidates, and drugs. (A) Binned values for Papp obtained from the RRCK assay, which are color-coded by high permeability
(Papp > 10, green), moderate permeability (2.5 < Papp ≤ 10, yellow), and low permeability (Papp ≤ 2.5, red) in units of 10−6 cm/s. (B) Binned values
for P-gp efflux liability obtained from the MDCK-MDR1 assay, which are color-coded by low P-gp liability (ER ≤ 2.5, green) or high P-gp liability
(ER > 2.5, red). (C) Binned values for clearance (CLint,u) assessed in a HLM stability assay, which are color-coded by low clearance (CLint,u ≤ 100
mL/min/kg, green) and high clearance (CLint,u > 100 mL/min/kg, red). Pie charts are color-coded based on the value of the bin, from desirable
values (green) to undesirable values (red), and the number of compounds in each pie is shown above each pie graph.

Figure 5. Bar chart of binned values for alignment of desired ADME attributes in one molecule: high Papp, low P-gp ER, and low CLint,u. Color-
coding for number of desired ADME attributes being satisfied: 3/3 (green), 2/3 (yellow), 1/3 (red), 0/3 (black), and not available (gray). Binned
CNS MPO scores are plotted along the x axis, and compound count is plotted along the y axis. The number of compounds in each bar is given above
the bar graph, and the number of compounds with the defined alignment is within the bar.
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compounds with CNS MPO scores above 4 displayed full
alignment of ADME attributes.
In our original analysis of the drugs and candidates, we

examined the distribution of the compounds from these two
sets across the physicochemical properties ClogP and TPSA,
which have been linked to safety risk (TPSA ≤ 75 Å2, ClogP >
3).6 One of the key objectives in our original work was to
prospectively and successfully move CNS design into the more
favorable safety risk property space (TPSA > 75 Å2, ClogP ≤ 3)

while maintaining good CNS penetration. Examination of the
three sets suggested that the CNS MPO candidate set achieved
this objective: 62% of the compounds in the CNS MPO
candidate set reside in the lower safety risk quadrant in
comparison to 12 and 5% for the drug and candidate sets,
respectively (Figure 6). This shift in property space to higher
polarity and lower lipophilicity suggests that the CNS MPO
desirability tool can help to expand CNS property space while
maintaining brain penetration, aligning ADME attributes, and

Figure 6. Distribution of candidate (n = 108), CNS MPO candidate (n = 21), and drug (n = 119) sets across the ClogP and TPSA property spaces.
Dotted black lines represent the cutoffs for preferred ClogP (≤3) and TPSA (>75 Å) values, as proposed by Hughes et al.6 Compounds are colored
by compound set: candidates (light blue), CNS MPO candidates (yellow), and drugs (green). The percentage of each compound set occupying a
given quadrant is provided in the corresponding quadrant.

Figure 7. Distribution of the CNS MPO candidate set, plotted across CNS MPO desirability and (A) Ceff (total drug, nM) and (B) Ceff (free drug,
nM). Compounds are colored by ADME attribute alignment: high Papp, low P-gp, and low CLint,u. Color-coding for satisfying desired ADME
attributes: 3/3 (green), 2/3 (yellow), 1/3 (red), and 0/3 (black).
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reducing safety risk. The ability to move design to more polar,
less lipophilic property space is remarkable given the dogma in
the literature indicating that CNS drugs require enhanced
lipophilicity and low polarity to facilitate passage through the
blood−brain barrier.7

Recently, we reported that the projected human efficacious
concentration (Ceff) was a critical end point for predicting
whether a CNS compound would survive two-species
exploratory toxicology studies.8 Compounds that had a Ceff
(total drug) of less than 250 nM and a Ceff (free drug) of less
than 40 nM had a greater chance of surviving animal safety
studies and progressing into regulatory toxicology studies. We
examined the relationship between Ceff and CNS MPO
desirability score to understand where the CNS MPO
candidate set resided (Figure 7). Although not all of the

compounds achieved the Ceff total (≤250) and free (≤40) drug
level objectives, most compounds did, and a majority of these
compounds also had full alignment of ADME attributes and
high CNS MPO scores. It is worth noting that the five
compounds that did not achieve the Ceff objective were on the
border of achieving this goal. This fact should remind us that
the optimal values for CNS MPO and Ceff end points are
guiding principles to drive toward compound quality, low
projected daily dose, and improved compound survival; they
should not be used as hard cutoffs or rules.
In designing the CNS MPO desirability tool, we chose six

fundamental physicochemical properties that had been
extensively used by the medicinal chemistry community to
optimize in vitro ADME attributes and to address safety risks.
While some properties are either invariant (MW) or well-

Figure 8. Each plot compares an end point from our original publication in 2010 to the current calculated values.3 (A) ClogD, (B) Basic pKa, and
(C) CNS MPO. Compounds are colored by compound type: drugs are shown in light green and candidates are in light blue. A straight-line fit
through the data is shown by the black line. For (C), the solid blue line represents a 1:1 correlation, and the dotted blue lines enclose a range of ±1
unit around the MPO desirability score.

Table 1. Representative Compounds for Which CNS MPO Changed with Updated Software

drug name

CNS
MPO
2015

CNS
MPO
2010

ClogD
2015

ClogD
2010

T0
ClogD
2015

T0
ClogD
2010

Delta T0
ClogD

Basic
pKa
2015

Basic
pKa
2010

T0 Basic
pKa 2015

T0 Basic
pKa 2010

Delta T0
Basic pKa

trazodone 5.2 5.5 2.6 1.6 0.7 1.0 0.3 7.5 6.7 1.0 1.0 0.0
terguride 5.5 4.6 1.6 1.4 1.0 1.0 0.0 8.1 9.8 1.0 0.1 −0.8
dextropropoxyphene 3.7 3.1 2.3 3.7 0.8 0.2 −0.7 9.2 9.2 0.4 0.4 0.0
nemonapride 4.2 4.5 2.7 2.0 0.6 1.0 0.3 8.4 8.4 0.8 0.8 0.0
cyclobenzaprine 2.4 2.8 4.5 3.3 0.0 0.4 0.4 9.2 9.2 0.4 0.4 0.0
nortriptyline 3.2 2.6 1.5 3.2 1.0 0.4 −0.6 10.0 10.0 0.0 0.0 0.0
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defined (TPSA9 and HBD), others are modeled based on
experimental values (ClogP, ClogD, and pKa). Because of the
utilization of piecewise linear transformation functions, we
expected the CNS MPO score to be relatively insensitive to
small variability in these modeled properties. Of these three
modeled properties, we have observed that the predicted
ClogD and pKa values generated by ACD/Laboratories
software are most subject to change. For some compounds,
predictions from the recent version of ACD software (version
12.1) vary more than one unit in ClogD or pKa from those with
the previous release (version 9.03) (Figure 8A,B). As
anticipated, when using the newer model calculations of
ClogD and pKa to compute the CNS MPO desirability score,
we observed very good correlation and small variances in the
CNS MPO score (R2 = 0.94, slope = 0.96), consistent with our
original objective of a robust algorithm (Figure 8C). The
changes in CNS MPO desirability score resulting from the
modified values of ClogD and pKa are all less than one unit.
Some of the largest changes in the drug set are detailed in Table
1. For example, dextropropoxyphene originally had a CNS
MPO desirability score of 3.1. When recalculated using the
updated ACD/Laboratories software, this value shifted to 3.7;
the change in score is driven solely by a change in ClogD (Δ =
1.4). The fact that most compounds’ CNS MPO desirability
scores change very little highlights an additional advantage of

multiparameter optimization and serves as another caveat about
relying on a single parameter to drive the decision to invest
resources in compound synthesis.
The commercial BioByte and ACD/Laboratories software

packages for calculating ClogP, ClogD, and pKa represent two
sources for these calculated end points. Many pharmaceutical
companies have their own computational tools for generating
these values. Highlighted in the property section analysis above
was the fact that ACD/Laboratories predicted the median
ClogD at pH 7.4 for the CNS MPO candidates to be higher
than ClogP, which suggested to us that this calculator was
overestimating ClogD. Therefore, we examined the distribution
of the three compound sets using our internally parametrized
ClogD calculator (PF-ClogD; Figure 9A). The median ClogD
values for the candidate (2.6) and drug (1.7) sets were in line
with the values obtained from ACD ClogD (version 12.1);
however, the median ClogD value (2.3) for the CNS MPO
compound set decreased nearly a log unit (0.7) from the ACD
ClogD value. The ClogD values from the internally para-
metrized calculator are likely closer to measured values for the
CNS MPO candidate set as it is trained with a large set of Pfizer
internal experimental data. We also examined the distribution
of compounds using an internally parametrized pKa calculator
(Figure 9B). For the CNS MPO compound set, pKa increased
from the ACD pKa of 4.1 to 5.6. Using the internally

Figure 9. Physicochemical property distribution of drugs, candidates, and candidates post-CNS MPO implementation for Pfizer-parametrized (A)
ClogD and (B) pKa. Count represents the number of compounds included in each analysis. The dotted red line indicates the median value for the
given property. (C) Bar chart of binned values for alignment of desired ADME attributes in one molecule: high Papp, low P-gp, and low CLint,u.
Color-coding for desired number of ADME attributes being satisfied versus CNS MPO desirability score: 3/3 (green), 2/3 (yellow), 1/3 (red), and
0/3 (black); compounds with data not available are captured in the total compound count. Binned CNS MPO scores are plotted along the x axis,
and compound count is plotted along the y axis and scaled to 100%. The number of compounds in each bar is given above the bar, and the number
of compounds with the defined alignment is within the bar.
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parametrized calculated values for ClogD and pKa in the CNS
MPO algorithm, we re-evaluated the alignment of drug
properties across the CNS MPO continuum. Overall, a better
relationship emerged between higher desirability scores and
alignment of drug properties (PF-pKa; Figure 9C). The analysis
suggests that, once validated, other ClogP, ClogD, and pKa
calculators can be used to further enhance prospective use of
the CNS MPO score in aligning ADME and safety attributes in
a single molecule.

■ CONCLUSIONS

Significant progress has been made in prospectively designing
molecules using the CNS MPO desirability tool. This tool,
based on an algorithm using a set of six fundamental
physicochemical properties, has expanded the design space
for CNS candidates and demonstrated the advantage of
utilizing a flexible, multiparameter approach rather than
individual cutoffs for physicochemical properties. The desir-
ability tool has helped to increase the percentage of compounds
being nominated with robust alignment of ADME attributes
and suitable brain penetration and has moved design into a
lower-risk safety space.6 One additional advantage of using the
CNS MPO approach in drug discovery is that it is not biased
toward individual historical physicochemical end points. This is
exemplified by the CNS MPO candidate set, which is less
lipophilic, less basic, more polar, and larger than the marketed
CNS drug set. Despite changes in calculated values for ClogD
and pKa since 2010, the analysis provided by the CNS MPO
tool remains valid, with only small changes in overall
desirability scores for the drug and candidates sets. The CNS
MPO design tool has played a role in reducing the number of
compounds submitted to exploratory toxicity studies and
increasing the survival of the CNS MPO candidates through
regulatory toxicology into First in Human studies. Furthermore,
all compounds for which we have measured human CSF drug
levels exhibited good CSF/Cp,u ratios and sufficient free drug
levels to adequately engage the target mechanism in the CNS
compartment. While there will always be the possibility of
idiosyncratic findings and on/off-target pharmacological side
effects, utilization of the CNS MPO tool in our design phase
has reduced attrition and improved compound quality.
Furthermore, it has been used as a design tool elsewhere,
both within and outside Pfizer. A Google Scholar search on the
original CNS MPO manuscript yielded over 200 citations.
These reports evaluating the CNS MPO tool are from authors
with over 100 unique affiliations, ranging from universities to
large and small pharmaceutical companies. In one example,
Rankovic has shown that an increasing CNS MPO score
correlates with increasing in vivo brain exposure in preclinical
species.10 Rankovic analyzed a diverse set of 616 compounds
from Lilly’s database for which experimental unbound brain
concentration (Cb,u) data was available and demonstrated that
81% of compounds with a high CNS MPO score (>5) had Cb,u
values classified as high; conversely, 100% of compounds with
low CNS MPO scores (≤2) had low Cb,u values.

10

The CNS MPO tool is only one of several approaches that
medicinal chemists can use for decision making in the design of
novel drug candidates. One of its advantages is its simplicity.
The CNS MPO tool is easy to implement using common
software such as Excel; it can also be formatted into a mobile
app. Table 2 provides an active table that allows rapid
calculation of CNS MPO scores: to activate, follow this link

or the one in the table, double-click the table that opens, and
enter values for each property.

■ METHODS
Data Collection. Pfizer CNS MPO Candidates. The CNS MPO

candidates included in our analysis consisted of 21 compounds that
met the appropriate preclinical profile to advance into regulatory safety
studies and, if appropriate, clinical studies. The drug and candidate sets
used in this analysis were the same as those in our 2010 publication.3

Desirability Functions and MPO Score Calculation. For the work
herein, calculated physicochemical properties were obtained using
standard commercial packages: BioByte, version 4.3, for ClogP
calculations, ACD/Laboratories, version 9.03 or version 12.1, for
ClogD at pH 7.4, and ACD/Laboratories, version 9.03 or version 12.1,
for pKa. For calculation of TPSA, the Ertl methodology was
employed.9 The CNS MPO scores were calculated using the
previously published method.3

Data Analyses. The data was visualized with JMP or TIBCO
Spotfire.10−12 In the histogram and box plots (Figures 2 and 9), the
interquartile range (25th to 75th percentiles) is represented by the
larger box with median values in a red dash line, and upper and lower
adjacent values are represented by the thin bar. Points outside upper
and lower adjacent values are defined as outliers (dots).

Statistical analyses were carried out using SAS JMP 10 statistical
software.11 Student’s t tests of pairs were carried out to compare the
sets (Table 3). The small sample size of the CNS MPO candidate set
degrades the power of statistics in some comparisons.

ADME Data. Data on the following in vitro ADME properties was
generated in-house utilizing the following high-throughput assays: (a)
passive apparent permeability (Papp), assayed utilizing the RRCK cell
line;13 (b) P-glycoprotein (P-gp) efflux liability, assessed via an assay
utilizing the MDCK-MDR1 cell line, an MDCK line stably transfected
with the MDR1 gene, which expresses a functionally active human P-
gp;14 (c) metabolic stability, expressed as unbound intrinsic clearance
(CLint,u), calculated according to eq 115 using the measured intrinsic
clearance (CLint), obtained via an in vitro high-throughput human liver
microsome assay, and an in silico model for free microsome fraction
(cFu,mic):

16

=CL
CL
cFint ,u

int

u,mic (1)

Table 2. Active CNS MPO Calculatora

CNS MPO calculator

property value T0

ClogP 3.7 0.65
ClogD 2.7 0.65
TPSA 90 1.00
MW 375 0.89
HBD 1 0.83
pKa 9 0.50
CNS MPO 4.5

aReprinted from ref 3. Copyright 2010 American Chemical Society.

Table 3. Statistical Analysis

candidates vs CNS MPO
candidates p-value

drugs vs CNS MPO
candidates p-value

MW 0.0428* <0.0001*
ClogP 0.0050* 0.2288
ClogD 0.2973 0.0444*
TPSA 0.1075 <0.0001*
HBD 0.4601 0.7251
pKa <0.0001* 0.0020*
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Compounds included in these studies were handled as 30 mM stock
solutions generated, dispensed, and checked for purity by Pfizer’s
internal sample bank and subsequently assayed in the ADME and
safety assays. The data generated from these assays for the drugs and
candidates are included in the previous publication.1

■ ASSOCIATED CONTENT
*S Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acschemneur-
o.6b00029.

Drug and candidate set data in tabulated form: Pub-
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